For the past 10 years, there’s only been one place in Atlanta where you can touch a brain, see a science fashion show, watch scientists give improv performances, and more — and that’s at the Atlanta Science Festival.

And during that time, the faculty and students of STEMcomm have become a festival staple.

STEMcomm, which stands for Science, Technology, Engineering, and Math (STEM) communication, is a course in Georgia Tech’s Vertically Integrated Projects (VIP) program. Established in 2016 by three faculty in the College of Sciences, the course uses science communication to create outreach events for the Atlanta Science Festival — and popular-science content to share on social media and online publications.

“I feel like there is a gulf in the world between people who do science and the general public,” says Jennifer Leavey, a principal academic professional in the School of Biological Sciences, the College’s assistant dean for Faculty Mentoring, and one of the founders of the course. “There is very little crosstalk there.”

The goal of STEMcomm is to bridge that gap and connect with an at-times overlooked audience: adults.

“When it comes to science, I think in general, there’s not a lot of new learning once you get beyond school-age. Teachers do a great job of engaging children with science, but for adults, I mean, there's not a lot there,” Leavey added. “I think there’s a real space for people with science knowledge to help bring that conversation more into the mainstream.”

Visit the College of Sciences website to hear how the faculty and students of STEMcomm are bringing science to Atlanta.

John Wallingford, PhD

University of Texas at Austin

 

Body Sculpting:  How the embryo constructs itself

The fascinating thing about embryos is that they construct themselves.  Indeed, it is the behavior of the individual cells within that directs dictates the construction of our tissues and organs, and defects in these behaviors are a key cause of human birth defects, which kill more than twice as many children as pediatric cancer.  Thus, understanding the cell biology of developing embryos is a crucial challenge in biology.  For the last two decades, our lab has used in vivo imaging, biomechanics, and proteomics to understand the collective cell behaviors that elongate the body axis in vertebrate embryos.  In this talk, I’ll discuss our recent work illuminating the nexus between tissue-specific developmental signaling systems that govern cell movements and the ubiquitous cell biological machinery that executes them.  The talk will focus on the interplay of Planar Cell Polarity signaling, actomyosin contraction, and cadherin-based cell-cell adhesion.

Event Details

Justin Meyer, PhD

University of California, San Diego

 

Coevolution between phage and bacteria drives the evolution of key innovations, new species, and biological complexity

Coevolution is predicted to be a creative force in the evolution of life, possibly contributing to the evolution of phenomena such as diversity, novelty, and complexity. One key mechanism by which coevolution promotes the emergence of these phenomena is by causing fitness landscapes to fluctuate, inducing continual evolutionary change, and causing exploration of new adaptations. For this talk, I will discuss several experimental studies on bacteria and phages that demonstrate the role coevolution plays in driving the evolution of key innovations, speciation, and the formation of complex ecological networks. The studies include quantification of how fitness landscapes change during coevolution by leveraging high-throughput gene editing-phenotyping technologies.   

Event Details

 

There are times when John McDonald, emeritus professor in the School of Biological Sciences and founding director of Georgia Tech’s Integrated Cancer Research Center, is asked to share his special insight into cancer. 

“Over the years, I’ve gotten calls from non-scientist friends and others who have been diagnosed with cancer, and they call me to get more details on what’s going on, and what options are available,” said McDonald, also a former chief scientific officer with the Atlanta-based Ovarian Cancer Institute. 

That’s the primary motivation why McDonald wrote A Patient's Guide to Cancer: Understanding the Causes and Treatments of a Complex Disease, which was published by Raven Press LLC (Atlanta) and is now available at Amazon or Barnes and Noble in paperback and ebook editions. The book describes in non-technical language the processes that cause cancer, and details on how recent advances and experimental treatments are offering hope for patients and their families.

A book for the proactive patient 

McDonald said he couldn’t go into detail for every type of cancer, but provides a generally applicable background for the disease. For those who want more information, he provides links to other resources, including videos, that provide more detail on specific types of cancer. “There’s not much out there in one place for patients who want to understand the underlying causes of cancer, and the spectrum of therapies currently available,” he said. 

McDonald, who was honored in January by the Georgia Center for Oncology Research and Education (CORE) as one of “Today’s Innovators,” also didn’t want A Patient’s Guide to Cancer to be a lengthy book, and it checks in at only 86 pages. 

McDonald believes that when patients talk to their physicians about cancer treatments,  they should ideally have a basic understanding of the underlying cause of their cancer, as well as a general awareness of the range of therapies currently available, and what may be coming down the road in the future. 

“My book is specifically designed to provide newly diagnosed cancer patients who are not scientists with this kind of background information, empowering them to play a more informed role in the selection of appropriate treatments for their disease”.

The current experimental treatment landscape; McDonald’s 2023 research goals

McDonald’s own cancer research has led to two related startup companies, co-founded with School of Biological Sciences colleagues. 

McDonald is working with postdoctoral researcher Nick Housley on using nanoparticles to deliver powerful drugs to cancer cells while sparing healthy tissue. The other company, founded in collaboration with Jeffrey Skolnick, Regents' Professor, Mary and Maisie Gibson Chair & Georgia Research Alliance Eminent Scholar in Computational Systems Biology, uses machine learning to create personalized diagnostic tools for ovarian cancer.

He and his lab team are also preparing to submit a research paper that builds off their 2021 study on gene network interactions that could provide new chemotherapy targets for breast cancer. That paper focuses on the three major subtypes of breast cancer. McDonald and his colleagues will also soon submit another study detailing genetic changes that happen with the onset and progression of ovarian cancer.

When it comes to current experimental treatments, McDonald says he’s especially excited about  the potential of cancer immunotherapy, which uses the body’s own immune system to fight cancer cells. But he writes in A Patient’s Guide to Cancer that because these drugs are also delivered systemically, healthy tissues can also be affected, potentially leading to autoimmunity or the self-destruction of our normal cells. 

“In the future, I believe many of the negative side-effects currently associated with the system-wide delivery of cancer drugs will be averted by the use of nanoparticles designed to target therapies specifically to tumors”.

 

 

There are times when John McDonald, emeritus professor in the School of Biological Sciences and founding director of Georgia Tech’s Integrated Cancer Research Center, is asked to share his special insight into cancer. 

“Over the years, I’ve gotten calls from non-scientist friends and others who have been diagnosed with cancer, and they call me to get more details on what’s going on, and what options are available,” said McDonald, also a former chief scientific officer with the Atlanta-based Ovarian Cancer Institute. 

That’s the primary motivation why McDonald wrote A Patient's Guide to Cancer: Understanding the Causes and Treatments of a Complex Disease, which was published by Raven Press LLC (Atlanta) and is now available at Amazon or Barnes and Noble in paperback and ebook editions. The book describes in non-technical language the processes that cause cancer, and details on how recent advances and experimental treatments are offering hope for patients and their families.

A book for the proactive patient 

McDonald said he couldn’t go into detail for every type of cancer, but provides a generally applicable background for the disease. For those who want more information, he provides links to other resources, including videos, that provide more detail on specific types of cancer. “There’s not much out there in one place for patients who want to understand the underlying causes of cancer, and the spectrum of therapies currently available,” he said. 

McDonald, who was honored in January by the Georgia Center for Oncology Research and Education (CORE) as one of “Today’s Innovators,” also didn’t want A Patient’s Guide to Cancer to be a lengthy book, and it checks in at only 86 pages. 

McDonald believes that when patients talk to their physicians about cancer treatments,  they should ideally have a basic understanding of the underlying cause of their cancer, as well as a general awareness of the range of therapies currently available, and what may be coming down the road in the future. 

“My book is specifically designed to provide newly diagnosed cancer patients who are not scientists with this kind of background information, empowering them to play a more informed role in the selection of appropriate treatments for their disease”.

The current experimental treatment landscape; McDonald’s 2023 research goals

McDonald’s own cancer research has led to two related startup companies, co-founded with School of Biological Sciences colleagues. 

McDonald is working with postdoctoral researcher Nick Housley on using nanoparticles to deliver powerful drugs to cancer cells while sparing healthy tissue. The other company, founded in collaboration with Jeffrey Skolnick, Regents' Professor, Mary and Maisie Gibson Chair & Georgia Research Alliance Eminent Scholar in Computational Systems Biology, uses machine learning to create personalized diagnostic tools for ovarian cancer.

He and his lab team are also preparing to submit a research paper that builds off their 2021 study on gene network interactions that could provide new chemotherapy targets for breast cancer. That paper focuses on the three major subtypes of breast cancer. McDonald and his colleagues will also soon submit another study detailing genetic changes that happen with the onset and progression of ovarian cancer.

When it comes to current experimental treatments, McDonald says he’s especially excited about  the potential of cancer immunotherapy, which uses the body’s own immune system to fight cancer cells. But he writes in A Patient’s Guide to Cancer that because these drugs are also delivered systemically, healthy tissues can also be affected, potentially leading to autoimmunity or the self-destruction of our normal cells. 

“In the future, I believe many of the negative side-effects currently associated with the system-wide delivery of cancer drugs will be averted by the use of nanoparticles designed to target therapies specifically to tumors”.

 

If you’re an avid gardener, you may have considered peat moss — decomposed Sphagnum moss that helps retain moisture in soil — to enhance your home soil mixture. And while the potting medium can help plants thrive, it’s also a key component of peatlands: wetlands characterized by a thick layer of water-saturated, carbon-rich peat beneath living Sphagnum moss, trees, and other plant life. 

These ecosystems cover just 3% of Earth’s land area, but “peatlands store over one-third of all soil carbon on the planet,” explains Joel Kostka, professor and associate chair of Research in the School of Biological Sciences at Georgia Tech.

This carbon storage is supported in large part by microbes. Two microbial processes in particular — nitrogen fixation and methane oxidation — strike a delicate balance, working together to give Sphagnum mosses access to critical nutrients in nutrient-depleted peatlands. 

The coupling of these two processes is often referred to as the “missing link” of nutrient cycling in peatlands. Yet, how these processes will respond to changing climates along northern latitudes is unclear.

“There are tropical peatlands — but the majority of peatlands are in northern environments.” notes Caitlin Petro, a research scientist who works with Kostka in Biological Sciences at Tech. “And those are going to be hit harder by climate change.”

Kostka and Petro recently led a collaborative study to investigate how this critical type of ecosystem (and the “missing link” of microbial processes that support it) may react to the increased temperature and carbon dioxide levels predicted to come with climate change. The team, which also includes researchers from the Oak Ridge National Laboratory (ORNL), Florida State University, and the University of Tennessee, Knoxville, just published their work in the scientific journal Global Change Biology.

By testing the effects of increasing temperature and carbon dioxide on the growth of Sphagnum moss, its associated microbiome, and overall ecosystem health, Kostka and Petro say computational models will be better equipped to predict the effects of climate change.

“Down the road,” Kostka added, “we hope the results can be used by environmental managers and governments to adaptively manage or geoengineer peatlands to thrive in a warmer world.”

Raising the heat

To see how northern peatlands will react to climate change, the team, which also included School of Earth and Atmospheric Sciences Associate Professor Jennifer Glass, turned to the ORNL Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment — a unique field lab in northern Minnesota where the team warms peat bogs and experimentally changes the amount of carbon dioxide in the atmosphere. 

Starting in 2016, the team exposed different parts of SPRUCE’s experimental peatlands to a gradient of higher temperatures ranging from an increase of 0°C to 9°C, capturing the Intergovernmental Panel on Climate Change models’ predicted 4°C to 6°C increase in northern regions by 2100.

The moss’s reaction was significant. Although nearly 100% of the bog’s surface was covered in moss at the beginning of the experiment, moss coverage dropped with each increase in temperature, plummeting to less than 15% in the warmest conditions.

Critically, the two microbial processes that had previously been consistently linked fell out of sync at higher temperatures. 

“Peatlands are extremely nutrient-poor and microbial nitrogen fixation represents a major nitrogen input to the ecosystem,” Kostka explained. Fixing nitrogen is the process of turning atmospheric nitrogen into an organic compound that the moss can use for photosynthesis, while methane oxidation allows the moss to use methane released from decomposing peat as energy. “Methane oxidation acts to fuel nitrogen fixation while scavenging a really important greenhouse gas before it is released to the atmosphere. This study shows that these two processes, which are catalyzed by the Sphagnum microbiome, become disconnected as the moss dies.”

“These processes occurring together are really important for the community,” Petro explained. Yet many microbes that are able to both fix nitrogen and oxidize methane were absent in the mosses collected from higher temperature enclosures. And while elevated carbon dioxide levels appeared to offset some of the changes in nitrogen cycling caused by warming, the decoupling of these processes remained.

“These treatments are altering a fairly well-defined and consistent plant microbiome that we find in many different environments, and that has this consistent function,” Petro explained. “It's like a complete functional shift in the community.” 

Though it’s not clear which of these changes — the moss dying or the altered microbial activity — is driving the other, it is clear that with warmer temperatures and higher carbon dioxide levels comes a cascade of unpredictable outcomes for peat bogs.

“In addition to the direct effects of climate warming on ecosystem function,” Petro adds, “it will also introduce all of these off-shooting effects that will impact peatlands in ways that we didn't predict before.”

This work was supported by the National Science Foundation (DEB grant no. 1754756). The SPRUCE project is supported by the U.S. Department of Energy's Office of Science, Biological, and Environmental Research (DOE BER) and the USDA Forest Service.

DOI: https://doi.org/10.1111/gcb.16651

Citation: Petro, C., et al. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. Global Change Biology. (2023).

Aerial Photo: Hanson, P.J., M.B. Krassovski, and L.A. Hook. 2020. SPRUCE S1 Bog and SPRUCE Experiment Aerial Photographs. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.012 (UAV image number 0050 collected on October 4, 2020).

When you see something buzzing, how do you know if it will sting?

Bees sting occasionally, but in general they are not aggressive — they’re defensive, and tend to only sting when they feel threatened.

“It’s mostly wasps that sting — they’re predators, they’re carnivores, and they’re more aggressive,” said Jennifer Leavey, assistant dean for faculty mentoring in the College of Sciences and principal academic professional in the School of Biological Sciences.

Leavey also serves as director for Georgia Tech’s Urban Honey Bee Project. She offers a few tips on how to identify the myriad arthropoda around campus and shares knowledge about each.

Tap here for the full version of this story, where you'll learn about carpenter bees, yellow jackets, ants, and more.

Half a century ago, Marvel Comics introduced the superpower-wielding scientist Bobbi Morse — aka Mockingbird — one of several famous superheroes imagined to hold a degree from Georgia Tech.

Today, just over seven decades since women first enrolled at the Institute, 56% of students earning degrees in the College of Sciences are female. As we celebrate Women's History Month and look to the future of our field, meet seven real-life superheroines of life science — and science fiction — from across the Institute.

Tap here to read this story in the Georgia Tech newsroom.

A multidisciplinary team led by Georgia Institute of Technology (Georgia Tech) researchers has received $14.7 million in funding from the Defense Advanced Research Projects Agency (DARPA) to develop novel diagnostic devices able to rapidly identify the bacteria causing sepsis – and viruses that cause respiratory infections such as RSV, SARS-CoV-2, and influenza.

The novel nucleic acid detection devices will use the CRISPR Cas13a enzyme to initiate a synthetic biology workflow that will lead to the production of a visible signal if a targeted infectious agent is present in a sample of blood – or fluid from a nasal or throat swab. The devices will be simple to use, similar to the lateral-flow technology in home pregnancy tests. The devices will provide diagnostic capabilities to low-resource areas such as clinics and battlefield medical units, allowing treatment of infections to begin more quickly – potentially saving lives.

“This new technology will make it much faster and more cost-effective to diagnose these infections,” said Mike Farrell, a Georgia Tech Research Institute (GTRI) principal research scientist who is leading the project. “You would obtain a sample, put it into a device, diagnose the underlying pathogen, and be able to provide a treatment. This could be a huge leap forward in rapidly diagnosing these diseases where sophisticated laboratory testing isn’t available.”

Funded by DARPA’s Detect It with Gene Editing Technologies (DIGET) program, the project – known as Tactical Rapid Pathogen Identification and Diagnostic Ensemble (TRIAgE) – also includes researchers from Emory University and two private sector companies. The goal will be to detect 10 different pathogens with each device.

Detection Reaction Begins with CRISPR Cas13a Enzyme

Detection of a pathogen will begin with exposure of a patient sample to the CRISPR Cas13a enzyme with guide proteins containing RNA genetic sequences from the targeted pathogens. If a genetic sequence in the device matches a sequence in the patient sample, the enzyme will begin breaking down the targeted RNA.

Development of the CRISPR Cas13a component of the project will be led by Phil Santangelo, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University and one of the team’s collaborators. CRISPR Cas13a differs from Cas9 technology, which has become known for its ability to edit DNA, which Cas13A will not do.

Once the Cas13a enzyme breaks down the pathogen RNA, that will trigger additional reactions to amplify the signal and create a visible blue line in the device within 15 minutes.

Synthetic Biology Workflow Signals Pathogen Presence

“We will be assembling a synthetic biology workflow that takes an initial signal created by CRISPR-based nucleic acid detection and amplifies it using the same cell-free synthetic biology approaches we have used to create sensors for detecting small molecules and metals: turning on genes that create a visual readout so that expensive instruments, and even electricity, are unnecessary,” explained Mark Styczynski, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering and another team collaborator.

“As part of the DIGET project, we will be leveraging my group’s expertise in minimal-equipment diagnostics,” he added. “The biological ‘parts’ we develop can be reused to transduce signals for the detection of essentially any nucleic acid sequence.”

Another Georgia Tech researcher, I. King Jordan, professor and director of the Bioinformatics Graduate Program in the School of Biological Sciences, will mine the genomes of the targeted pathogens for optimal Cas13a target sequences as well as the corresponding Cas13a RNA guide sequences.

Devices Must be Both Sensitive and Specific

Beyond specifically identifying the pathogen or pathogens causing an infection, the diagnostic devices being developed must also be very sensitive – able to detect as few as 10 copies of the target pathogen in a sample. “A major technological challenge is achieving the level of signal amplification within the device’s synthetic biology circuit to reach the needed level of sensitivity,” Farrell said.

The ability to detect 10 different pathogens with a single lateral-flow assay is an ambitious goal for a device that depends on a synthetic biology circuit and is designed for use in the field, he added. Lateral-flow assays commonly used in home or point-of-care medical tests operate by applying a liquid sample to a pad containing reactive molecules. The molecules may create visible positive or negative reactions, depending on the design.

“You just put the sample on the device and it does its thing,” Farrell said. “If the target pathogen is present, a line turns blue and you can see it with your eye.”

Early Diagnosis Can be Life-Saving

Sepsis is an infection of the bloodstream by any of a number of different bacteria. These bacteria can originate from a lower respiratory infection, kidney or bladder infection, digestive system breakdown, catheter site, wound, or burn. Sepsis results in a severe and persistent inflammatory response that can lead to disrupted blood flow, tissue damage, organ failure, and death.

“It’s important to identify the specific bacteria causing the sepsis because that informs the type of antimicrobial therapy that’s needed,” said Farrell. “The sooner you can identify the underlying pathogen, the faster you can provide the proper medical care, and the more likely it is that the patient will survive. Current laboratory-based diagnostic methods can take between 24 and 72 hours, and that is just too long.”

Improving diagnostics for sepsis and respiratory diseases will have applications to both the military and civilian worlds, particularly in locations without easy access to laboratory testing.

“Wounded soldiers in the field are very susceptible to sepsis blood infections, and common respiratory diseases can affect troop readiness, so from a military standpoint, having this rapid diagnostic test would be very significant,” Farrell said. “In low-resource environments, being able to diagnose these diseases with a single test would be huge as well. Being able to identify the underlying bacteria behind sepsis more quickly could save a lot of lives.”

Beyond the university researchers, the project includes Global Access Diagnostics, a manufacturer of lateral-flow devices, and Ginkgo Bioworks, which manufactures proteins essential to the diagnostics.

The five-phase project is expected to last for four years and will conclude with field validation and a transition to manufacturing. The devices will need to win FDA approval before they can be used, so there is a significant regulatory review aspect to the project, Farrell said.

Approved for Public Release, Distribution Unlimited

Writer: John Toon
GTRI Communications
Georgia Tech Research Institute
Atlanta, Georgia

The Georgia Tech Research Institute (GTRI) is the nonprofit, applied research division of the Georgia Institute of Technology (Georgia Tech). Founded in 1934 as the Engineering Experiment Station, GTRI has grown to more than 2,900 employees, supporting eight laboratories in over 20 locations around the country and performing more than $800 million of problem-solving research annually for government and industry. GTRI's renowned researchers combine science, engineering, economics, policy, and technical expertise to solve complex problems for the U.S. federal government, state, and industry.

When you see something buzzing, how do you know if it will sting?

Bees sting occasionally, but in general they are not aggressive — they’re defensive, and tend to only sting when they feel threatened.

“It’s mostly wasps that sting — they’re predators, they’re carnivores, and they’re more aggressive,” said Jennifer Leavey, assistant dean for faculty mentoring in the College of Sciences and principal academic professional in the School of Biological Sciences.

Leavey also serves as director for Georgia Tech’s Urban Honey Bee Project. She offers a few tips on how to identify the myriad arthropoda around campus and shares knowledge about each.

Tap here for the full version of this story, where you'll learn about carpenter bees, yellow jackets, ants, and more.

Pages

Subscribe to School of Biological Sciences | Georgia Institute of Technology | Atlanta, GA | Georgia Institute of Technology | Atlanta, GA RSS